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Abstract. It is shown that parametric linear programming algorithms work efficiently for a class of
nonconvex quadratic programming problems called generalized linear multiplicative programming
problems, whose objective function is the sum of a linear function and a product of two linear
functions. Also, it is shown that the global minimum of the sum of the two linear fractional functions
over a polytope can be obtained by a similar algorithm. Our numerical experiments reveal that these
problems can be solved in much the same computational time as that of solving associated linear
programs. Furthermore, we will show that the same approach can be extended to a more general class
of nonconvex quadratic programming problems.
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1. Introduction

Konno and Kuno, in a recent series of articles [9], [10], showed that certain
classes of nonconvex minimization problems can be solved by parametric convex
minimization algorithms.
The first class of problems to which they addressed is linear multiplicative

programming problems defined below:

minimize  (cix + oy )(cix + o)

subjectto x€X
where ¢, ¢, ER", o,, 0, € R" and X C R" is a polytope. The objective function
of this problem is neither (quasi-)convex nor (quasi-)concave on X. Konno and
Kuno [9] divided the feasible region into two subregions

X, =XN{xER"|(cix+ o)(cyx + 0,)=0}
X,=XN{x€R"|(c}x+ o,)(chx + 0,) <0)
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and showed that the associated subproblems:

minimize  (cjx + 0, )(chx + o,)

. 1.1
subjectto x € X, (1)

minimize (cix + o,)(cx + 0,)
subjectto x € X,

can be solved by convex minimization algorithm.
The key idea of their paper [10] is to establish the equivalence of (1.1) to its
master problem:

minimize  ¢(cix + o), + E (chx + o)
§ (1.2)
subjectto x€X,, £=0.

and to apply a parametric linear programming algorithm to (1.2). Also they
demonstrated that this algorithm can solve large scale linear multiplictive pro-
gramming problems.

In [9], they extended this idea and proposed a similar algorithm for solving a
generalized linear multiplicative programming problem:

minimize x)+ (cx+ o) cix + o
1 1 2 2

1.3
subjectto x€ X (1-3)
and a generalized linear fractional programming problem:
.. (cox + 0y)
minimize +
mize  f) T o (1.4)

subjectto xE€ X .

where X is defined as before and f( - ) is a convex function. They assumed without
loss of generality that

(cix+0)=0, (x+0,)=0, Vx€X

and applied a parametric convex programming algorithm to their master
problems:

1
3

minimize f(x) + &(cix + 0,)* + < (chx + a,)’

subjectto x€ X, £=0.

and

1 1

minimize  f(x) + £(cix + 0;)" + £ (chx+ o)

subjectto x€ X, ¢=0
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Also they applied this algorithm to a special case of (1.3) in which f(-) is a
quadratic function and claimed that it is reasonably efficient.

The purpose of this paper is to propose an alternative algorithm for solving
(1.3) and (1.4) when f(-) is affine or quadratic. It will be shown in Section 2 that
the former problem can be reformulated as a linear programming problem
containing a parameter in both its objective function and its right hand side
vector. This reformulation enables us to construct a variant of parametric simplex
algorithm. Section 3 will be devoted to the extension of the algorithm to the case
where f(-) is a convex quadratic function. It appears that our approach is simpler
and at least as efficient as the ones proposed in [14]. In Section 4, we will show
that the algorithm developed in Section 2 can be adapted to a generalized linear
fractional programming problem (1.4) in which f(- ) is a linear fractional function.

It should be emphasized that these nonconvex minimization problems have
important applications in economics [6], bond portfolio optimization [8], and so
forth. Readers are referred to [12, 13] for advanced development in nonconvex
quadratic programming problems.

Results of numerical experiments of our algorithm will be presented in Section
5. Finally in the Appendix, we will discuss the way to get around degeneracy.

2. Parametric Simplex Algorithm for Minimizing the Sum of a
Linear Function and a Linear Multiplicative Function

2.1. PARAMETRIC MASTER PROBLEM
Let us consider a special type of quadratic programming problem defined below:
minimize G(x)=dx+c'x- g'x,

subjectto Ax=b, x=0. @1

where ¢, d, gER", AER™", bER™. Let us assume for simplicity that the
feasible region

X={x€ER"|Ax=b, x=0}

is non-empty and bounded.

G(-) is neither (quasi-)convex nor (quasi-)concave on X, so that it can have
multiple local minima as demonstrated in [10], [14]. To solve (2.1), we first
introduce an auxiliary variable

=g,

and define a master problem:
minimize F(x; &)=d'x+ &-c'x
subject Ax=b, x=0,

gx=¢&, (nnSEséy,. (2.2)
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where
£ =min{gx | Ax=b, x=0}
& . =max{g'x|Ax=b, x=0}
Problem (2.2) has an optimal solution since its feasible region is nonempty and

bounded.

THEOREM 2.1. Let (x*, £*) be an optimal solution of (2.2). Then x* is an
optimal solution of (2.1).
Proof. Obvious from the definition of (2.2). O

This reformulation leads us to apply parametric linear programming approach to
solve (2.1). Let us introduce a class of linear programs:

minimize (d + £c)'x

P .
(&) subject to Ax=<[;), x=0.

where ¢ €[£ ., £,...] and
AZ<A>=<a1,a2,...,an>.
g/ &8s 8
Let x(¢) be an optimal solution of P(£) and let

h(€)=(d + &0)'x(€) .
Also let

¢* = argmin{h(8) | pin < €< &nux} -

9"3? = §ma.x

t
g T = §min
Fig. 1. The trajectory of x*(£).
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Then x*=x(¢*) is an optimal solution of (2.1). Figure 1 shows a possible
trajectory of x*(¢).

2.2. ALGORITHM FOR SOLVING THE MASTER PROBLEM

Let x(&,) be an optimal basic solution of P(§,), where & €[ £y, &max] and let B
be an associated basis matrix of A (we assume for simplicity that matrix A has full
row rank). Also let

A=(B,N),
r= ()= () a=(5)

be the partition of a matrix and vectors corresponding to the basis matrix B.
By using the familiar notations

N 3 -1 _ gt -1
m=cxB ", o=dzB ",

cy=cy—mN, dy=dy—oN,

¢, =B(§)

we obtain the optimal dictionary of P(£,):

minimize (d, + £¢5)Db(&) + (dy + &Cx) Xy
subjectto  x, = b(&,) — Nxy ,

= =
x3=0, xy=0.

Note that d, + &y =0 and b(£,)=0.

THEOREM 2.2. B is an optimal basis of P(&) for all ¢ satisfying the following
conditions

dy+ &y =0, (2.3)
(b

B (g)/o. (2.4)

Proof. See [3], |5]. a

The condition (2.3) generates an interval [«;, B;] where

{a1=max{—cf]-/c_j|c"j>0} 2.5)

B, =min{—d./c; | ¢, <0}

where ¢;, J}.’s are components of ¢, and d,. Also, by writing
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57 () =a+ep. 26)

the condition (2.4) is equivalent to a, < ¢ < 8, where

a,= max {—q,/p,| p,>0},
22, 2.7)
{ﬁzzlsliglrﬁhl {-qi/pilpi<0}. ( .
Hence B is an optimal basis of P(¢) for all ¢ €[¢, £] where
&=max{a,, a,},
{:_ n(6, (2.8)
E=min{ B, B,} -

Note that [¢£, £] is nonempty since &, € [¢£, £].
Let us impose here the non-degeneracy assumption (see Appendix for the
detailed discussion about degeneracy).

NON-DEGENERACY ASSUMPTION. The following conditions hold for all
§O = [gmin’ gmax]

(i) £<§,

@) oy #a,, B,#B,.
Case 1. £=,. B B
When ¢ reaches ¢, we obtain an alternative optimal dictionary of P(&) by
choosing the nonbasic column vector (a,, g,)" of A as an incoming basic vector
where

Bl = ‘gr/é_r M
Alternative optimal dictionary of P(&) can be obtained by a primal simplex

pivoting procedure. Note that we can find a pivot element since the feasible
region of P(¢) is bounded. Let B’ be the alternative optimal basis.

ar
i
D0 |B---D < PP sy
® ®
+ 510 -
8%
@ .
Case 1 Case 2

Fig. 2. Optimal dictionary for P( &).
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Case 2. _‘,E = p,. B
At ¢ = ¢, we obtain an alternative optimal dictionary of P(¢€) by performing a
single dual simplex pivoting at the row s where

BZ = —qs/ps .

Let B’ be the alternative optimal basis. Let [£, £'] be the interval of £ in which B’
is optimal.

At this juncture, we will prove the condition which guarantees the termination
of our procedure.

THEOREM 2.3. In case &=, and all the element of the s-th row of the optimal
dictionary of P(£) are nonpositive, then £ =§_,..
Proof. Let us write the s-th row of the dictionary as follows.
Xp, = by(§)— 2 agx; -
i€ty
By assumption b (£)<0 for ¢ > &, so that P(¢) is infeasible for &> £ By
definition P(¢) is feasible for all ¢ € [£,,,, £max], Which proves £=¢ O

min > max *

Starting from the optimal basis for P(£_; ), we can generate a sequence of

min

constants
§minE§1<§2<...<§k+lE§max!
and a sequence of bases B,, B,, ..., B, such that B, is optimal for all P(¢),
£, £l
Let

hy=min{(cy + &dp)(E) | € E[£, €11} = (cp, + E1d )B(E)

and let
h, = 1réljigk h;,
Then
lx; = b(¢")
x:,I =0

is a global minimum of (2.1). Figure 4 shows the behavior of A( £), and the dotted
line shows the value of h; associated with the interval [£,, §,,,].

Algorithm
Stage 1. Solve a linear program
minimize g'x

subjectto x€ X
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and let &,
let B, be an optimal basis of P(¢

=min{g'x | x € X}. Also let £ be an optimal solution of P(£;,) and
min)‘ t=1.
Stage 2. Let x* =%, h* =, £ =&,
(1) Calculate £ according to (2.5), (2.7) and (2.8).
(2) Let

v = (CB, + gdB,)tl;(é)
=min{(c, + §dBt)t5(§) | £€[§ £}

If v<v*, then let v*=uv, x;' = 5( 2), x:,t =0, where N, stands for the
matrix of nonbasic columns associated with B,.

(3) case 1. €= B,. Obtain a new optimal dictionary associated with an alterna-
tive optimal basis B,,, of P(£) by applying a primal simplex procedure at
column r where B, = —d,/¢,. Let t=t+1 and go to (1).

case 2. &= p,. Obtain a new optimal dictionary associated with an alterna-
tive optimal basis B,,, of P(£) by applying, if possible, a dual simplex
procedure at row s where B, = —q,/p,. Let t =t + 1 and go to (3). If such
a basis cannot be found, then terminate. [l

2.3. LINEAR MULTIPLICATIVE PROGRAMMING PROBLEMS

Let us consider the special case of (2.1) in which d =0. This is nothing but a
linear multiplicative programming problem treated in [1], [2], [10], [14]. In this
case, problem (2.2) reduces to

minimize £-c'x
subjectto Ax=b, x=0,
gtx=§9 gmins‘fs'gmax'

Thus it sufficies to solve two parametric right hand side linear programs

minimize c¢'x
subjectto Ax=b, x=0,
gx=¢, 0s¢<§,,,
and
maximize c'x
subjectto Ax=b, x=0,
gx=¢, fpn<£<0.

Solving these problems is easier than solving (2.2). Also it looks simpler than the
algorithm proposed in [10].
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3. Parametric Linear Complementary Problems Associated
with Generalized Linear Multiplicative Programming Problems

The algorithm presented in Section 2 can be extended to a more general class of
nonconvex quadratic programming problems:

1
minimize G(x) =d'x + 3 x'Dx +c'x- g'x

3.1
subjectto Ax=b, x=0.

where D is a symmetric positive semi-definite matrix and the feasible region
X={x€ER"|Ax=b, x=0}

is nonempty and bounded. It is now straightforward to see that (3.1) is equivalent
to the following master problem:

minimize F(x; ¢§)=d'x + % x'Dx+ £-c'x
subjectto Ax=b, x=0,
8x=¢, &un<ES&nu-
where A
& . =min{gx|Ax=b, x=0}
£ =max{gx| Ax=b, x=0}

Let us choose &, €[ £..i0> Emax] and consider a quadratic programming problem:
minimize F(x; &) =d'x + % x'Dx + £,c'x
Q(&) |subjectto Ax=b, x=0,
gx=4¢, .

Q(¢,) is a convex quadratic programming problem and hence is equivalent to the
following linear complementarity problem (4], [11].

Find vectors
x€ERT, u€eR,, y€ERT,
vER™, z,ER,, z,€R., (3.2)
such that X
LCP(£) ,
D —-A" -g g -1 0 z ¢ -
A 0o 00 o —If "|={0]g+| b,
g 0 00 0 O iz 1 0
ux=0, vy=0. v 3.3)
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By using a standard method [11], we can obtain an optimal basic solution
w*=(x*, y*, z,,z,,u*, v*) of the systems of equations (3.2) such that
(u*)'x*=0 and (v*)'y* =0. Let B be an optimal complementary basis of (3.2).
Also let wy, w,, be the associated basic and nonbasic variables, respectively. Then
the complementary dictionary can be written as follows:

WB=q+p_§O_NWN ’
where g + p&, =0. This dictionary is optimal for all £ such that
q+pt=0,

from which we obain an interval [£, £]. When & reaches £, one of the basic
variables, say w, becomes zero. We will replace w, with a nonbasic variable w,
according to the following rule:
(i) If w,=x, then w,=u,,
(i) f w,=u, thenw,=x,,
(i) If w, =y, thenw,=v,,
(iv) fw,=v, thenw,=y,,
V) Ifw,=2z, thenw,=z,,
(vi) If w, =2z, thenw,=z.
This exchange rule maintains the complementarity condition (3.3), so that we
obtain a dictionary associated with a complementary basic solution of LCP(§).
Let B’ be the new complementary basis. Associated with B’, we calculate the
interval [¢’, £'] in which B’ is optimal (note that ¢’ = £). Choosing &, = £_,, to
start with, we will obtain a sequence of constants

gmin<§1<§2<"'7<§k+1:§max’

and a sequence of complementary bases B, B,, ..., B, by avoiding cycling due
to degeneracy. Let

F, =min{F(x*(¢); )| §sés<¢,).

Note that x*(¢) is a linear function of ¢ in the interval [§,, §;,,], so that
F(x*(€), £) is a quadratic function of ¢. Thus F; can be calculated by elementary
arithmetic. Obviously

F,= min F,
1sjsk /

gives the global minimum of f(x) over X. Also x*(£') is an optimal solution of
(3.1) where

¢ = argmin{ F(x*(£); &) | § < €<§..).

4. Minimizing the Sum of Two Linear Fractional Functions

Let us consider here the following nonconvex programming problem [8§]
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t t
cixt+oy dix+T

. Flx) =
minimize F(x) dxto, drxtr (4.1)

subjectto Ax=b, x=0.
Figure 3 shows the three-dimensional picture of the sum of two linear fractional

function with two variables, which shows that F(-) is neither convex nor concave.
We will assume that

cpx+0,>0, dix+7,>0, Vxe€X, (4.2)
where
X={x€ER"|Ax=b, x=0}.

Let
1

yo_d'zx+72'

Fig. 3. 3-dimensional plot of the function F(x) of (4.1).
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Then the problem (4.1) is equivalent to

_ (chx+ a1)yq

N (e3x + a3)y,

subjectto Ax-:y,— by, =0,
yoldox + ) =1,
x=0, y,=0.

minimize ﬁ(x; Vo) +(dix + 1)y,

Let
Y=Yo Xx.

Then (4.3) is equivalent to

. cy+o
minimize F(y, y5) = ng—+ogj§ +diy+ Ty,
subjectto Ay — by, =0

dyy+ 1y, =1,

y=0, y,=0.

Let

Emin = inf{ctzy + 0¥, 1 Ay — by, =0, dlzy +1ny,=1,
y>07 y020}7

Emax = SUP{Cy + 0y, [ Ay — by, =0, doyy +1y,=1,
y=0, y,=0}.

PROPOSITION 4.1. 0< &, < ¢, <.
Proof. It ¢

min

(4.3)

=0, then there exits (v, y,) = 0 satisfying Ay ~ by, = 0 such that

¢,y + o,¥,<0. By definition y, = 1/(d%x + 7,) for some x € X. Hence y,>0, so

that

A(yly)—b=0, ci(¥lyg) o, <0, yly,=0.

This is a contradiction to the assumption (4.2). Thus &, >0. £ . < can be

proved analogously.

Let us consider a parameiric linear programming problem:

O
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) 1 :
minimize : (cy + oyy) +(diy + 7yy,)

subjectto Ax — by, =0,

dy+my,=1, (4.4)
Gyt oy, =£,
y207 y020a

§min < f = gmax .

THEOREM 4.2. (i) If y*, yq is an optimal solution of (4.4), then x* = y*/y; is

an optimal solution of (4.1).

(it) If (4.4) has an unbounded solution, then (4.1) has an unbounded solution.
Proof. Obvious. O

Minor modification of the algorithm in Section 2 works for this problem.

5. Computational Experiments

We will report the results of the computational experiments of the algorithm
presented in Section 2. The program was coded in C language and tested on a
SUN4/280S computer.

We solved the problems of the form:

minimize G(x)=dx+c'x-g'x
subjectto Ax=b, x=0.

where ¢, d, gER", AER™™", b& R™. All elements of A, b, ¢, d and g were
randomly generated, whose ranges are [0, 100]. This implies that every problem
has a finite optimal solution, since its feasible region is bounded.

Ten examples were solved for each size of the problems. Table I shows the
remarkable performance of our algorithm. In fact, Stage 2 requires much less
CPU time than Stage 1 (about 5% of Stage 1) for all problems.

We also tested randomly generated problems of the form:

!
_ c'x
minimize G(x)=d'x +
g'x

subjectto Ax=b, x=0.
where ¢, d, gE R", A€ R™™", b € R™. The algorithm similar to the one presented
in Section 2 solved the above problem efficiently, Our numerical experiments

reveal that these problems can be solved in much the same computational time as
that of solving associated linear programs.
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Fig. 4. Behavior of h(¢£).

6. Appendix

Here we discuss pivoting rules which avoid cycling in the case of degeneracy.
First we construct a pivoting rule similar to the criss-cross method for Problem
2.1. For any pair of vectors x = (x,,...,x,) and x' =(x}, ..., x,), we say x is
lexicographically greater than or equal to x’, denoted by x =, _x', or x' =, x, if
there exists i (1=<i= k) satisfying that x; = x']., 1<V j<iand x,>x, or x=x".
Given a scalar &, with £, < §, < £,..,, our purpose is to obtain a basis satisfying

((ij + §O(’Tj’ (’T]) Zlexo and (q] + §0pj’ p]) Zlexo ? for an] ’ (61)

where 0=(0,0). If a basis satisfying (6.1) obtained, then £> ¢, and we will
update &, by &.
Given a basis B, we define the scalar A(B) as:

|, + &¢]|

A(B) = min{min{ T

: j is nonbasic index ,
|d; + £,¢,/>0 and Ic_j|>0},
min{l—q—j—r—gfﬁ : j is basic index ,
" g+ &p>0 and [p[>0}}.

Let A_,, = 3 min{A(B): B is a basis of A). Then from the definition of A(B),
A_,, > 0. The definition of A_, directly implies the following lemma.

79
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LEMMA 6.1. For any basis B of A and for any index |,
(d; + &}, €)=, 0 if and only if d,+ (& +A,,)¢ =0,
(4;+ &P;> P;)) =1, 0 if and only if g, + (& + A,,,)p;=0.

By solving a linear program P(£,+ A,;,) with a suitable method, we obtain an
optimal, infeasible or dual infeasible basis. In case an infeasible basis is obtained,
then &, = &, as was shown in Theorem 2.3. Assume that a dual infeasible basis
is obtained. It implies that P(£,+ A,,;,) is dual infeasible. If P(&, + A_;,) is not
infeasible, then P(£, + A_;,) is unbounded and it contradicts with the bounded-
ness of the feasible region of P(&,+A_,,). Thus P(£,+A,,,) is infeasible and
there exists an infeasible basis. Then we can show that £, = £, in the same way
as infeasible case.

Here we show the advantage of the criss-cross method for solving P(&, + A,;.).
When we apply a computer program for solving P(&,+A_,,), we have to
determine the input size of A_, . However, the above lemma indicates that the
sign of each component of d, + (& + A, )Cy and gy + (& + A, )Py can be
checked by the lexicographical ordering between (Jj + &5, €;), (q; + &pj> D))
and 0. The criss-cross method is a simple finite algorithm for linear programming
developed by Zionts [18] and extended to the setting of oriented matroid by
Terlaky [15], [16] and Wang [17], and it requires only the sign of each component
of the tableaux. Thus the above lemma implies that we can apply the criss-cross
method for solving P( &, + A ;) without deciding the magnitude of A, ; . Another
advantage of the criss-cross method is that the initial basis need not be either
feasible or dual feasible. In case B, = B,, the current basis (optimal to P(§,)) is
neither feasible nor dual feasible for P(&,+ A,,;,). However we can take the
current basis as an initial basis of the criss-cross method.

Now we discuss the finite pivoting rules for the nonconvex quadratic program-
ming problems treated in Section 3. In [7], Klafszky and Terlaky modified the
criss-cross method for a quadratic programming problem with a symmetric
positive semi-definite matrix. Similar to the ordinary criss-cross method, the
modified algorithm requires only the sign of each component of the tableaux. This
means that we can construct an algorithm for the nonconvex quadratic program-
ming problems which avoids the cycling in the same way as discussed above.

min

min*

References

1. Aneja, Y. P., Aggarwal, V., and Nair, K. P. K. (1984), On a Class of Quadratic Programming,
EJOR 18, 62-70.

2. Bector, C. R. and Dahl, M. (1974), Simplex Type Finite Iteration Technique and Reality for a
Special Type of Pseudo-Concave Quadratic Functions, Cahiers du Centre d’Etudes de Recherche
Operationnelle 16, 207-222.

3. Chvatal, V. (1983), Linear Programming, W. H. Freeman and Company.

4. Cottle, R. W. and Dantzig, G. B. (1968), Complementary Pivot Theory of Mathematical
Programing, Linear Algebra and lis Applications 1, 103-125.



PARAMETRIC SIMPLEX ALGORITHMS 81

10.

11.

12.
13.

14.

15.

16.

17.

18.

Dantzig, G. B. (1963), Linear Programming and Extensions, Princeton University Press, Prince-
ton, New Jersey.

. Henderson, J. M. and Quandt, R. E. (1971), Microeconomics, McGraw-Hill, New York.
. Klafszky, E. and Terlaky, T. (1989), Some Generalizations of the Criss-Cross Method for

Quadratic Programming, Combinatorica 9, 189-198.

. Konno, H. and Inori, M. (1988), Bond Portfolio Optimization by Bilinear Fractional Program-

ming, J. Oper. Res. Soc. of Japan 32, 143-158.

. Konno, H. and Kuno, T. (1989), Generalized Linear Multiplicative and Fractional Programming,

THSS Report 89-14, Institute of Human and Social Sciences, Tokyo Institute of Technology.
Konno, H. and Kuno, T. (1989), Linear Multiplicative Programming, THSS Report 89-13,
Institute of Human and Social Sciences, Tokyo Institute of Technology.

Lemke, C. E. (1965), Bimatrix Equilibrium Points and Mathematical Programming, Management
Science 11, 681-689.

Pardalos, P. M. and Rosen, J. B. (1987), Global Optimization, Springer-Verlag, Berlin.
Schaible, S. (1974), Maximization of Quasiconcave Quotients and Products of Finitely Many
Functionals, Cahiers du Centre d’Etudes de Recherche Operationnelle 16, 45-53.

Swarup, K. (1966), Programming with Indefinite Quadratic Function with Linear Constraints,
Cahier du Centre d’ Etudes de Rescherche Operationnelle 8, 133-136.

Terlaky, T. (1985), A Convergent Criss-Cross Method, Math. Oper. und Stat. ser. Optimization
16, 683-690.

Terlaky, T. (1987), A Finite Criss-Cross Method for Oriented Matroids, J. Combin. Theory. Ser.
B 42, 319-327.

Wang, Z. (1987), A Conformal Elimination Free Algorithm for Oriented Matroid Programming,
Chinese Annals of Mathematics 8 B 1.

Zionts, S. (1969), The Criss-Cross Method for Solving Linear Programming Problems, Manage-
ment Science 15, 426-445.



